MCEN90031 Applied High Performance Computing
Assignment 1

The Shallow Water Equations
Due date 29" September, 2017

¢
90,

Figure 1: Example solution of Shallow Water equation with MPI

Name ID
Li Lindong 795501
Zheng Bujingda | 838092

Contents

1 Introduction 2

1.1 Purpose e 2

1.2 Governing Equation oo 2

1.3 Fourth order Runge-Kutta analysis 3

1.3.1 Fourth order Runge-Kutta for ODEs model 3

1.3.2 RK4 Stability analysis L. 4

1.3.3 RK4 Error Analysis 5

1.4 Six order central difference stencil method and its derivation 7

1.5 OpenMp oL 9

1.6 MPIL 10

2 Method 11

2.1 Finite Difference method for Shallow Water Equation 11

2.2 RKA4 For time marching loop oo 13
2.3 Enforcement of periodic boundary condition for Various versions of the

program and Data structure oL 14

2.4 OpenMP application to parallelize solution 17

2.5 MPI application to parallelize solution 19

3 Results 25

3.1 Scaling Results of OpenMP code 27

3.2 Scaling Results of MPI code 32

4 Discussion 34

5 Reference 39

1 Introduction

1.1 Purpose

The aim of the assignment is to obtain the numerical solution of the shallow water
equation by MATLAB and C++ program which applied fourth order Runge-Kutta
method and sixth order central finite difference stencil. After getting numerical solu-
tion which is calculated data from the programmes, applying proper visualization by
MATLAB and Paraview are also important to show the work result of program.

For C++ program, two parallelizing method will be applied, including OpenMP and
MPI. The principle of two methods are different, and for OpenMP, it shares and
arranges memory among threads to let various parts calculated separately and si-
multaneously. For MPI, it is actually a method which redesigns and distributes the
memory for C++ program while it is more complicated in structure but has more
efficient optimization than OpenMP method.

1.2 Governing Equation

From the assignment questions we got the governing equation and we need both vector
notation and fully expanded to present the governing equations.

ov

-~ . = _q- 1.2.1
5 +v-Vov g-V ()
oh
— -vh = 1.2.2
5 +V-v 0 ()
And we can expand them fully as follow,
avm avx avx oh
_ = a2 1.2.
ot~ or Yoy Jor (12:3)
v, v, v, oh
— = U —Uy— — §— 1.24
ot Yo or dy g(‘?y ()
oh _ _ (Qugh) (Ovyh) (12.5)

ot ox dy

1.3 Fourth order Runge-Kutta analysis
1.3.1 Fourth order Runge-Kutta for ODEs model

For this part, we start at,
" = ¢+ Atg(¢' !, At) (1.3.1)
k= f(¢' 1)
ko = f(¢' + Slke, t' + 1)
ks = f(¢' + Stka, t' + 5F)
ky = f(¢' + Athks, t' + At)

Here we apply two-dimensional Taylor series expansion for ks, k3, k4, and apply total

derivative with respect to time to get following results,

At? D f
3! dt?

At D3 f
4! dt3

A Df

5
o +O(AP) (1.3.2)

tl

&“zﬁ+%ﬁ@%ﬂ+

tl tl

while ¢ in equation (1.3.1) for RK4 should be,
g = arky + agka + asks + asky

and equate coefficients we get the system of equations, we can get the coefficient of
RK4,
and finally the RK4 result is,

1 1 1 1
Pt =o' + At(ékl + §k2 + gks + 6k4) (1.3.3)

1.3.2 RKH4 Stability analysis

According to previous equations (1.3.1), (1.3.2), (1.3.3), we can do more expansion as
following steps,

1 1 1
P = ¢l +At(6k1 + 3l<:2+ 3k3+ 6k4)

=o'+ At(f(gbl t + f(d)l + ékl,tl + %)
+ f(¢ +§k2,t‘+ %)4— — (¢ 4 Atks, t' + At))

=¢' + At(g)@l + g(w (@ + (A AL + ..
AAL)? (AAE)?R (MA)?
TR TR TR
Thus the solution at any time step 1 can be written as,
(AAL)2 (MAL)? (AAY!
TR R T (1.3.4)

= ¢'(1+ \AE + (

o' = ¢"(1+ At +
— ¢00_l

While we know that in order to have stability |o| < 1, and we can easily plot the
figure of stability region,

RK4 Stabilty region

Figure 2: RK4 stability region for six order central finite difference method with
different time step

1.3.3 RK4 Error Analysis

In order to perform the error analysis we again consider the case where A is purely

imaginary and get the amplification factor into polar form as,

(PPArm A (B AL (A A)?
T R T

o = (1+idpmAt +)
= Ze"

So here we can work out the value of Z and 6, and for amplitude error,

1 1 1
7= \/(1 = GRAZ £ S MAHP £+ (AAL = NAR)?

— 1
276 72 *

B \/ ASAS M6ALS

and for the phase error,

AAE — EN3AE)
1 — (FA2A82 — LAAL)

0 = tan " (

recall we can use the equation, ﬁ =1l+a+a?+a+a*+ ... and the phase error
equation becomes,

AAL — ENPAL)
1 — (3A2A82 — LA

1 1 1 1 1 1 1
— tan Y (AAE — SASAB) (14 (SAZAE — — AAAL) + (SAZAL2 — —NAA)2 1 (ZA2AL2 — — \AAH)3
an™(6)1+ 21 A0+ (5 24)+ (5 24))

0 =tan "' (

+)
-1 1 3 3 1 3 3 1 2 2 1 4

Using the same approach that we did for the Euler and Crank-Nicolson methods, we
can show that the phase error is given by:

1 1 1 1 1 1
6—()\At—6)\3At3) = tan*l((AAt—6A3At3)+(>\At—EA?’A#”)(§A2At2—ﬁA‘*At)Jr...)—(AAt—E/\?’At?’)

Well based on the above information we got the plot of amplitude and phase error,

Amplitude error
400 : : : ' : '

350 1

Amplitude error
N
8

AAt

Figure 3: Amplitude error for six order central difference method

160 T T T T

140

120

100

80

60

Phase Error

40

20

Figure 4: Phase error for six order central difference method

1.4 Six order central difference stencil method and its deriva-
tion
This part we are supposed to start at general finite difference formula,

1 (& =
= <Z A Pi—m + apP; + Z a+m¢z‘+m> (1.4.1)
m=1

m=1

d¢

dz™

%

T

and then according to our shallow water equation problem we just set n = 1 in this
case because it is a first derivative problem and we can acquire the equation from
equation (1.4.1),

do Al M
| ~ 7 Z A @imm + aoP; + Z A Pitm (1.4.2)
vl m=1 m=1
Now considering the Taylor expansion,
- . d¢ (NmA'r>2 d2¢ (NmA:L’)S d3¢ 4
d(x; N, Ax) = phz(xi)i(NmAx)% xi—l— oA di?|, TR xi—l—O(NmA:c)

In our assignment, we need to set 1 < m < 6, and substituting the resulting expres-
sions for ¢;i,, into the Equation (1.4.1) and collect coefficients of each derivative of
P,

52, y :AL;E ((a_3 Fa s+ a i +ag+ai + as + as) ¢(g;i))
+ ((as(—3) +a_s(=2) +a_1(=1) + ag(0) + a1 (1) + as(2) + as(3)) Am%
oo e e il o en)
. ST SR R

)

Ax2d2_¢

dx?
o
da?
d*¢
dat
d®¢
da®
dS¢
da6

Az

Azt

Ax®

AxS

T

T

T4

T

A U U U

T

and work out the system,

P N N N

P BN BN

~—] =] —

— &

N

N

~

720

720

720

1.5 OpenMp

When paralyzing our code with OpenMp, memory used for the master thread during
the serial region will be shared among other just-created sub threads within the para-
lyzed region, at which time code will be executed simultaneously by all of the threads.
OpenMp introduced a fork/join paralyzing model, which illustrates that out of the
parallel region, all code will be executed with only one master threads and the thread
ID is 0. Sub threads will be created as entering the parallel region, which looks like
a fork. After this parallel region, sub threads will come back to the master threads,
which is called as join. Since the memory is shared among master threads and sub
threads, thread with their own ID can thus utilize data of other threads.

Therefore, achieving this operation requires the programmer to let the compiler know
at which part sub threads need to be created. Specific directives and clauses need to
be added. For example, if a for loop will loop for 4 times, we can then add 'pragma
omp for” before the for clause to enable the for loop to loop 4 times simultaneously.

For PDE problem, as we always perform the time integration by applying Euler or
Rounge-Kutta method, iteration is required for both numerical methods. For loops
are therefore inevitable, OpenMp can thus be applied before the time marching loop,
and other time-consuming iteration part, such as assembling results at one time step.

Master
Thread
Serial
tegion
Master +Sub
Fork Threads
Parallel
region
Join F--L—-Y-—— Synchronization
Master
v Thread

Figure 5: at serial region only Master thread will execute, at parallel region sub threads
will be created

1.6 MPI

Message passing interface, is the most widely supported parallel mechanism. Unlike
OpenMp, which aided the parallel with shared memory, MPI helps to shorten the
running time by assigning memory to different processes. Such that there can be
processes with different ID executing same part of the code at same time. In order
to make use of the data or value obtained by other processes, MPI offered us with
several build-in functions to use, such as MPI_Send or MPI_Rec, which helps to send
and receive data required for calculation between different processes.

When it comes to PDE problems, as described before, iterations are inevitable if nu-
merical methods are applied. With MPI, iteration process will then be divided into
several jobs, which will be calculated within several processes, MPI_Send/MPI_Rec
will be used to perform the data sending among these processes. Different from Open-
Mp that all threads are basically operating on same data, MPI assign the data grid
into several parts and a single process will only have access to one single part of data
grid, which greatly shortens the running time.

send .
—— receive

receive ,__send

ProcessO Processl

Time

Figure 6: There will be data transfer between each process during execution

10

2 Method

2.1 Finite Difference method for Shallow Water Equation

To apply the six order finite central difference at shallow water equation, it is just like
the following figure. In the same time period, relationship between target position and
the other closed positions can be specified by this method. We need to consider values
around the target position with their coefficient which we have calculated. Recalling
equation 1.2.3 to 1.2.5, we transfered the PDE to serval ODE functions and then
applied the superposition of each result of ODE. Furthermore, we can expand these
three governing equations into six order finite central difference version and code it
into the program.

0v, 0v, v, oh
o~ "ox Yoy Yoz
Vg 1 3 3 3 3 1
= T Ar (~ g0 VE=3) + 50 Ve i=24) — 7V~ 1) + 7 Vx15) 5 Va2.) + @Ux(i-&-&j))
- %(6—1()“x(i,j—3) + Q%Ux(i,j—z) - va(m‘—l) + i Ug(ij+1) — 230Ur(i,j+2) + %Uﬂc(i,ﬁiﬂ)

h 1 3 3 3 3 1
T (—hi—zj+ s-hicoj — <hici;+ Zhi—i-l,j = 5t + _hi+37j)

Aa: 60 20 4 20 60
(2.1.1)
8vy ~Ovy Ov, Oh
ot Ve 8y g@y
3 3 3 3 1
60 Uy(i-3.4) T 57 90 ui=29) T yUui-1) +Zvy(z‘+1,j) _Q_OUy(i—i-Q] 60 Vu(i+3.9)
3 3 3 3 1
(60 Uy(i,j—3) T 55 50 Vuii=2) T Vi1 + 7wt T 55 V(i) + @%(@M))
3 3 3 3 1
(hij—s + 20’%,;‘—2 - Zhi,j—l + Zhi,j—&-l — 20’%;+2 + 6th,j+1>

(2.1.2)

11

811 (c%xh) (avyh)

h 3 3 n 3 3 n 1
Vg (i— 7 Vs (i— —~Vz(i—1,5 “ V(i N — 3~ Uz(s] “~Uz(i43,5
60 (i—3.5) 20 (i—2,4) — 4 (i—1,9) 4 (i+1,5) 20 (i+2,5) 60 (i+3.5)

3 3 3 3 1
+ ogli-29) = 1) + Jhaeng — 5ghaen + @h@w,j))

A_a: (20 4
h .3 3 3 3 L
it 60 Uy(ij=8) T 50 Vulid~2) = 7 Ui-1) T Vi) T 50 Yuliit2) T g Uuiits)
3 3 3 3 1
N A_Z/(fig=s) + gphea-2 = phei-n + s = gaheare +ghasts)

(2.1.3)

Figure 7: Six order central difference principle diagram

where whether in MATLAB or C++ program, we tend to build a 3D matrix ¢(V, X
N, x 3) to store the parameters v, vy, h, and the example code for MATLAB is,

12

k(i, j, 1)=-phi (i, j, 1) /Delta_x*(-1/60%phi (iq3, j, 1)+3/20%phi (iq2, j, 1)+3/4*phi (iql, j, 1)+3/4%phi (ip1, j, 1)+3/20%phi (ip2, j, 1)+1/60%ph:
—phi (i, j, 2)/Delta_v*(-1/60%phi (i, jq3, 1) +3/20%phi (i, jq2, 1)+3/4*phi (i, jql, 1)+3/4*phi (i, jpl, 1)+3/20%phi (i, jp2, 1)+1/60*ph:
—g/Delta_x*(-1/60%phi (iq3, j, 3)+3/20%phi (iq2, j, 3)4+=3/4*phi (iql, j, 3)+3/4*phi (ipl, j, 3)+=3/20%phi (ip2, j, 3)+1/60%*phi (ip3, j, 3}

k (i, j, 2)=—phi (i, j, 1) /Delta_x*(-1/60%phi (iq3, j, 2) +3/20%phi (iq2, j, 2)+3/4*phi (iql, j, 2)+3/4*phi (ip1, j, 2)+3/20%phi (ip2, j, 2)+1/60%ph:
—phi (i, j. 2)/Delta v*(-1/60%phi (i, jq3, 2) +3/20%phi (i, jq2, 2)+3/4*phi (i, jql, 2)+3/4%phi (i, jpl, 2)+3/20%phi (i, jp2, 2)+1/60%*ph:
-2/Delta_v*(-1/60%phi (i, jq3, 3)+3/20%phi (i, jq2, 3)+3/4*phi (i, jql. 3)+3/4*phi (i, jp1, 3)+=3/20%phi (i, jp2. 3)+1/60%phi (i, jp3. 3]

k (i, j, 3)=—phi (i, j, 3) /Delta_x*(-1/60%phi (iq3, j, 1)+3/20%phi (iq2, j, 1)+3/4*phi (iql, j, 1)+3/4%phi (ip1, j, 1)+3/20%phi (ip2, j, 1)+1/60%*ph:
-phi (i, j, 1)/Delta_x*(-1/60%phi (iq3, j, 3)+3/20%phi (iq2, j, 3)+3/4*phi (iql, j, 3)+3/4%phi (ipl, j, 3)+3/20%phi (ip2, j, 3)+1/60%*ph:
—phi (i, j, 3)/Delta_v*(-1/60%phi (i, jq3, 2) +3/20%phi (i, jq2, 2)+3/4*phi (i, jql, 2)+3/4*phi (i, jpl, 2)+3/20%phi (i, jp2, 2)+1/60*ph:
-phi (i, j, 2)/Delta_v*(-1/60%phi (i, jq3, 3)+3/20%phi (i, jq2, 3)+3/4*phi (i, jql, 3)+3/4*phi (i, jp1, 3)+3/20%phi (i, jp2, 3)+1/60*ph:

2.2 RK4 For time marching loop

At previous parts, we have already derived the expression of RK4, and we illustrate
the C++ program for RK4 time marching loop:

// Time marching loop
for (int 1 = 05 1 < N_t ; 1++){
t += Delta_t;
f(k1, Phi);
for (int i = @; 1 < N_x; i++){
for (int j = @; j < N_y; j++){
for (int n = @; n < 3; n++){

tempPhi[i][j][n] = Phi[i][j]1[n] + Delta_t *@.5 * k1[i][j][n];|

¥
}
f(k2, tempPhi);

for (int i = @; 1 < N_x; i++){
for (int j = @; j < N_y; j++){
for (int n = @; n < 3; n++){
tempPhi[i][j]1[n] = Phi[i][j][n] + Delta_t *@.5 * k2[i][j]1[n];
}
}

¥
f(k3, tempPhi);

for (int 1 = @; 1 < N_x; i++){

for (int j = @; j < N_y; j++){

for (int n = @; n < 3; ne+){
tempPhi[i][j]1[n] = Phi[i][j]1[n] + Delta_t * k3[i][j]1[n];

}
}
f(k4, tempPhi);
for (int i = @; 1 < N_x; i++){

for (int j = @; j < N_y; j++){

for (int n = @; n < 3; n++){

Phi[i][j][n] = Phi[i][j][n] + Delta_t*(k1[i][j][n] / & + k2[1][j][n] / 3 + K3[1][j][n] / 3 + ka[i][j][n] / 6);

13

2.3 Enforcement of periodic boundary condition for Various
versions of the program and Data structure

In the shallow water equation problem, due to the periodic boundary condition, it is
necessary to set up the enforced boundary conditions to deal with some grid points
which are out of the current template module. There are four different program styles
we have to consider, including MATLAB, C++, C++ with OpenMP parallel and
C++ with MPI parallel programs. For first three programs, the method for boundary
conditions enforcement are same. When the grid points needed were beyond the tem-
plate, we would need to let the value of points come to the other sides, as the Figure.8
shown, to realize the boundary condition shift.

However, for MPI parallel program, things can be easier. For previous code, we al-
ways need to let the code to make an estimate about the position inside the grid.
Boundary will be particularly enforced if is three elements away from the edge. But
for MPI code, contributed by the exchange function, the ’edge’ part in previous code
now becomes part of the interior grid and can be treated in a same way as the interior
grid of previous code.

Figure 8: Diagram of Principle of MATLAB, C++ and C++ OpenMP Boundary
condition enforce

14

As for data structure, at the beginning, I was about to store all elements inside a
myNx 4+ 6 x 3 X 3 cuboid, which is easier for me to construct and easier for me to
call them, but occupies more space obviously. I then changed the data structure into
a stripe, which is actually storing all elements in a column. Not only this method
enables us to call the elements with the same index as before, it also saves more space.

More specifically, this data structure can be illustrated by figure.12. Not only can we
save more space by arranging in this way, also we can call them with exactly the same
index as we used in previous method.

fer i=1:N x
ipl=[1-3 1-2 3-1 i+1 1+2 1+3];
if (i==1)

ipl=[N_x-2 N.x-1 N.x 2 3 4];
elseif (1==2)

Tpl=iNoe=l Moxil 3 4.5]:

elseif (1==3)

ipl=[N.x 1 2 4 5 6];

elseif (1==N_x)

ipl=[N -3 Nx-2 Nx-11 2 3];
elseif (i==N_x-1)

ipl=[N x4 N =3 N2 Nx1 2];
elseif (i==N_x-2)

ipl=[N x5 N x4 N -3 Nx1 N x 1];

end

Figure 9: realizing the boundary condition in MATLAB

double ***h vx vy = new double **[N x];

for (int 1 = 0; 1 < N x; i++){

h vx vy[i] = new double*[N y];
VR _ .)]
for (int j = 0; j < N y; j+H){ All data stored va /
- in three layers // Vs VA
h vx vy[i][§] = new double(3]; e 4
s /7
s Ve
s S

Figure 10: Storing all elements in a cuboid

15

template<class T>
T##+ allocate3D(const int& M, const int& I, const int& 0)
{

TH#% A = new TH*[I];

AL0] = new T#[* N;

AL01[0] = new TOHN * 10 * 0];

for {(int m= 1, mm = N; ndl; wH, mm += 1)
{
Alm] = &AL0] [mm] ;
1
for (int mn = 1, nn = 0; <), mrt+, nn += 0)
{
A[0] [mn] = &al0][0] [rn];
cout << m << 7 << mn << endl;
}
return A;

Figure 11: Storing all elements in a column

All data only stored in
one column

Aln] = &400] [mn]

Figure 12: Storing all elements in a column and calling them by using their address

relative the column

16

2.4 OpenMP application to parallelize solution

For our code, shallow water equation, since it requires large number of loop times,
part of the loops is even nested. In order to achieve the highest efficiency, OpenMP
directives thus need to be added to the most time-consuming part. As a result, we
first add the 'for’ directive before the time marching loop and each affiliated loops for
collecting temporary RK4 results. We did not add it inside the RK4 function since
that would create more threads and increase the running time, since the threads are
already spread out. One thing need to be mentioned is that there will be a ’single’
region inside the parallel region, which means that all threads need to stop here and
wait for the write function and time calculation to proceed. If 'single’ region not in-
troduced, time and write function would be executed many times. Our algorithm is
illustrated by a flow chart.

Start
Declare
variables
) M
Adding for emory
allocation

parallel directive

>

Entering time

Adding for marching loop
v

parallel directive
Obtaining K1, K2 K3
and K4 by Calling RK4

function

Adding single
parallel directive

If data-export
needed Assemble

solution for

current time step
¥

Figure 13: Algorithm of our OpenMp code

17

As illustrated by Figure.13 that we need to add ’for” directive before the time march-
ing loop, sub threads also need to be created inside the time marching loop for the
calculation of 'K’ values of Rounge Kutta method. When four 'K’ values are ob-
tained, solution at one time step can be assembled. What the actual code structure
looks like is showed by figure.14. If our code is running on our own laptop, ’write’
function will be called to export the data. If not, 'write’ will not be called as it’s
quite time-consuming, results of illustrating time consumed by file I/O are at a later
section.

rkd(kl, h_vz_vr).
#pragma omp for cchad

Figure 14: Part of our OpenMp code

18

2.5 MPI application to parallelize solution

For our shallow water equations, the usual MPI_Send/MPI_Rec may not be enough,
since our data grid is not a 1-D stripe, but a 2-D grid instead. As a result, we need
to apply other MPI functions in order to perform data exchange between different
process among 2-D grid. We then need to make use of several build-in functions of
MPI, such as MPI_Cart_create(), MPI_Comm_rank() and MPI_Cart_coords().
After using these functions, the number of grid after been divided into processes will
be then be the total number of processes assigned. And the assignment of process to
each grid will be like in figure below.

The process arrangement is illustrated by figure above, the blue region at the edge of
each process is called halo region, since data stored there will not be exported into
final solution but will be used for calculation. For the shallow water equation, the
inner white part is a myNz X myNy square and the halo stripe has the dimension
of (myNxz + 6) x 3 x 3, 3 means three layers of data, h, Vx and Vy, another '3’
corresponds to the periodic boundary condition. This kind of boundary condition
enables us to present and maintain the effect of wave, which requires exchanging data
between left and right, top and bottom edges. Halo region after MPI_Send/MPI_Rec
will possess the value from the edge part of other process. Comparing with the flow
chart of OpenMp, the major part of MPI code will be a little bit different.

Y
X

Figure 15: process allocation if four processes are assigned, White - data grid, Blue -
halo region

19

Declare
variables
Memory

allocation
Entering time
marching loop

Obtaining K1, K2 K3
and K4 by Calling RK4

function

Calling exchange
function to fill the
halo region

Assemble
solution for
current time step

0

Figure 16: Flow chart of MPI code

However, the RK4 function of MPI code can be shortened accordingly. Different from
previous sections, periodic boundary conditions at edges can be enforced in a same
way of the interior grid. Since the halo region is been filled with suitable values. For
this case, the region with index from 3 to myNx+3 can be treated as interior region.
illustrated by figure.17 and figure.18.

“Ivoid rk4(double sk, double ssh_vi vy) {
//#pragma omp for schedule(static)
for (int i = 3; 1 { myN_x + 3; i+ {
int ibelfl = {1 -3, i-2, i-1,i+1, i+2 i+3]I;
for (int j =3; § < myN_v + 3; j+5{
int jbel6l ={3-3 3-2, j-1, j+1, =2, 3+31I

/{k of vz
k1103101 = -h_ve wy[i][j1[1] / Delta x*(-1.0 / 60 * h_vx_wv[ibc
- hovz_vy[il[j1[2] / Delta_vy*(-1.0 / 60 * h_vx vv[il[
- g / Delta_x%(-1.0 / 60 * h_vx_vylibc
= /leout << Delta x << " " <{ Delta v << " " << howve_vy[i][jl1[2] <<
/'k of vy
k1031021 = =hove wv[i]1[4]

/ Delta_x*(-1.0 / 60 % h_vs_vy[libc
/ Delta_y+(-1.0 / 60 * h_vx_vy[i][
- g / Delta_y*(-1.0 / 60 * h_vx_vy[il[

il1(4101]
- hovz_vy[il[§1[2]
//k of h
k[il[5]l0

= -1/ Delta_x*(-1.0 / 80 % h_vx_vy_ibc[0]][1% h-
-1/ Delta_vy#(-1.0 / 60 * h_vx_vy[il[jbec[0]1[0] # h_

b

return;

Figure 17: Modification inside the RK4 function

Figure 18: Boundary condition can be satisfied easily

21

// Create a new datatype to store valuess on bottom and Top boundary
SMPL_Type_vector (myll_x, 3%3, 3 * (myl_y + 6), MPI_DOUBLE, &strideType);
SMPI_Type_commit (kstrideType)

void exchange (doubled®* h vy vy, int mvID, int N _Procs, int* neishbor)
{
ffleft Sending a block of memory with dimension of 3 * 3 # (myll_y + 6) from Left edges of the grid to the Right
WPI_Sendrecv(&(h_ vz ww[31[0]1[0]), 3* 3% (myl_v + 6), NPI_DOUBLE, neighbor[0], 0,
&b v vy [myN_x + 310010010, 3 * 3 * (myN_y + 6), MPI_DOUBLE, neighbor[1], 0, Comm2D, &status);
Siright Sending a block of memory with dimension of 3 # 3 # (myll_v + 6) from Right edges of the grid to the Left

WPI_Sendrecy (& (h_vs_vy [myN_x] [0 [01), 3# 3% (mlly + 6), NPI_DOUBLE, neighbor[l], O,
&h_vxz_wv[0][0][0]D, 3% 3 # (myN_y + B), NPI_DOUBLE, neighbor[0], 0, Comm@D, &status);
//bottom Sending a block of memory with storing type of Stride from Bottom to the Top
MPI_Sendrecy (&(h_vwe_ww[3]1[3]1[0]), 1, strideType, neishbor(2], 0O,
& ve_vv[3] [myN_w+3]1 [01), 1, strideType, neighbor[3], 0, Comm@D, &status);
Fitop Sending a block of memory with storing type of Stride from Top to the Bottom
MPI_Sendrecv (&(h v vy [3] [myl_v]1 1010, 1, strideType, neizhbor[3], 0,
&(h_wx_ww[3]1 0010010, 1, strideType, neighbor[2], 0, Comm@D, &status);
return;

Figure 19: Real code of Exchange() Function

(3.myN_x+3,0)

Pl et

= = — -

e ——— — — —]

(3,3,0)

(3.0.0) (myN_x+3,0,0)

Figure 20: Graphical explanation of Exchange() function

Specifically, the exchange function is illusrated by Figure.19. Horizontal exchange
based on big chunk of memory, vertical exchange will apply another kind of memory
called strideType, which covers the whole myNx x 3 x 3 part of data. The exchange
function helps to exchange four edges of the interior grid of a single process to oth-

22

er processes, which can be graphically illustrated as figure.20. When applying the
boundary condition, halo points are all within the reach, RK4 function can thus be
shortened accordingly.

The number of grids been decomposed is n"2, and I have tested 4 and 9 grids on my
laptop, more grids/processes execution was experimented after uploaded on barcoo.

In terms of file I/O, previous code can all export data within only one process, which
means only one set of data file will be generated and this file covers the data of the
whole grid. Unlike them, MPI code runs on several processes and the number of set
of data files exported equals the number of processes assigned, which contains only
a portion of data. Files generated by these processes can eventually constitute the
whole data grid, which is what we want and does not include the halo region.

Process Process Process
3 4

File 1 File 2

At one

Halo
time step [[region
x

File 4 File 3

Figure 21: Files been exported do not include any halo region

23

Therefore, in order to combine all of the data file at the end, each exported file needs
to be marked with their own processes ID and the index that can illustrate the time
step. Screen shot of our code is illustrated by Figure.22.

As we can see from Figure.22 that we call the file-writing function within the time
marching loop, with calling parameters myCoords-X, myCoords-Y and tm, which help
to tag the file exported with process ID and the time index. We then need to open one
file within the write function with this tagged name, write the data and close it. This
is how we export file within one process at one time step. If I run it with 4 processes,
there will be 4 set of ’.csv’ files generated eventually and can be visualized through
Paraview.

//Calling the Write function within the time marching loop, mark the file with
Sfprocess 1D and Time index

Jfsprintf s(myFilelame, “Process_%d %d %d. csv”, myCoords[¥], myCoords[Y], tm);
Siwrite(file, hove vy, mvFilelame);
void write(fstreank file, double®tt b vi vy, char mvFilelame[64]) {
file. open(myFilellane, ios:iout);
for (int j = 3; j<mllvy + 3; j++)
{
int index_x, index_v;
for (int i = 3; i<mll x + 3; i++) 1
index_x = 1 - 3;
index_v = j - 3;
file << dindex_x << 7.At7 < index v << 70N < hv wr[11[5110] << endl;
i
}
file << "yn™:
file.close();

return;

Figure 22: Exporting file in actual code

24

3 Results

After explanation of part of the code and algorithm, results of four versions of code
are posted in this section. Each of the post are the combined results of Shallow Water
equation at different time step.

~
%
oo

. w\}\z/{w .

100 100

100 100

Figure 23: Screenshot of solution at different time step produced by matlab

25

Figure 24: Screenshot of solution at different time step produced by cpp code

444

Figure 25: Screenshot of solution at different time step produced by OpenMp code
with 4 threads

A
N o
P

Figure 26: Screenshot of solution at different time step produced by MPI code with 4
processes

3.1 Scaling Results of OpenMP code

Table 1: Time required per integration step for OpenMp code when upload on barcoo

Threads 1 2 4 8 16 32 64

dx=dy=0.1,dt=0.02 | 0.652 0.327 0.164 | 0.0831 | 0.0462 | 0.0548 0.0542

dx=dy=1,dt=0.02 | 0.00610 | 0.00310 | 0.00160 | 0.00082 | 0.00048 | 0.000264 | 0.000314

dx=dy=1,dt=0.2 | 0.00621 | 0.00585 | 0.00549 | 0.00533 | 0.00542 | 0.0141 0.0251

27

Figure 27: Screenshot of solution at different time step produced by MPI code with 9
processes

Table 2: Time required per integration step for OpenMp code with File I/O when
upload on barcoo

Threads 1 2 4 8 16 32 64
dx=dy=1,dt=0.02 | 0.01057 | 0.01058 | 0.010554 | 0.01055 | 0.01054 | 0.01057 | 0.01056
dx=dy=1,dt=0.2 0.0113 | 0.01072 | 0.0106 | 0.010714 | 0.01066 | 0.010719 | 0.010737
dx=dy=0.1,dt=0.02 | 1.0935 | 1.0308 1.0303 1.0304 1.0923 1.0279 1.0288

As we can see form table.1 that scales time step produces relatively weak effect on
time saving, but if we scales dx and dy, its effect on running time is highly observable.
Except for scaling, all code present the best performance if 16 threads are used, we can
imply a sharp rise from threads 1 to threads 16, running time per time step present
a decreasing trend when using more threads. This phenomenon can be related by
the nodes’ property of barcoo, which has only 16 threads per node, communication
between nodes will cost more time if more threads need to be introduced.

28

Table.2 illustrates the file I/O can have an impact on the running time. Since for each
time step, a large amount of data will need to be exported, which cost for time. The
total time therefore is longer than that without file exporting.

Graphically, effect of weak scaling for dx=dy=0.01 and dx=dy=0.1 is obvious after
using 16 threads, as we can see form figure.xxx that when having more grid points,

the decrease in speedup is larger than that with less grid points.

When we tried to make time step larger, the result is even more observable.

Scaling results of OpenMp code without file I/O

64
d =d_=0.1d=0.02
Xy t
——d,=d,=10,=0.02
92 Ideal
16
o
3
B
@ 8
(o
7
4 L
2 L

1 2 4 8 16 32 64
Number of Threads

Figure 28: scaling results of increasing grid points by OpenMp code

29

Scaling results of OpenMp code without file I/O

64
d,=d =1d,=0.02
———d,=d =1d,=02
92 Ideal
16 |
o
=)
B
o 3
jo N
W)
4 =
2 =
1 , ; ‘ = .
1 2 4 8 16 32 64

Number of Threads

Figure 29: scaling results of increasing time step by OpenMp code

As we can see from Figure.29 that increased number of iteration made the power of
speedup contributed by using more threads prolonged to 32 threads. This honestly
is something we did not expected to happen. Since we thought what we compared
was the average time cost per time step, which would not be affected by increasing
or decreasing time steps. However, this is happening. What we can imply from it is
that if OpenMp method is going to be applied, satisfying results can be produced by
coding with smaller time step, ie more iterations. This phenomenon can be explained
by efficiency managing. Since the speedup we plotted is a relative quantity, too many
time steps may cost relative long processing time with one thread used. Once more
threads participate into the execution, the whole iteration can be effectively divided
into several portions. Based on shared memory, running time is reduced. That is
why such phenomenon is not obvious for smaller iteration times, since it may be fast
enough already with one threads. Admittedly, effective as it is, the parallel efficiency
and speedup can experience a drop after using more than 16 threads. This is be-
cause barcoo can only provide us with 16 threads for one node. Using more threads
means one node is not enough, informing other nodes is therefore inevitable but time-
consuming.

30

Following this, we compared the speed up for same scaling code with file I/O. Results
are as expected.

Comparing with previous results, file I/O greatly limited the speedup. Not only the
file opening and closing takes time, adding single directive inside the parallel region
also limit the speed. As the file exporting cannot be paralyzed, fpragma_omp_single
means the part will only be executed by one single thread and would limit the potential

of speedup.

Scaling results of OpenMp code with file I/O

64
d =d_=1d,=0.02
Xy t
d,=d =1d,=0.2
92 Ideal
16
o
=
B
@ 8
o
7
4 L
2 L

1 e —————1]
1 2 4 8 16 32 64

Number of Threads

Figure 30: scaling results of increasing time step by OpenMp code with file I/O

31

Scaling results of OpenMp code with file I/O

64
d =d =0.1d =002
Xy t
———d,=d =1,=002
92 Ideal
16 -
o
=)
®
o 8
jo N
W)
4 =
2 =
1
1 2 4 8 16 32 64

Number of Threads

Figure 31: scaling results of increasing grid points by OpenMp code with file I/O

3.2 Scaling Results of MPI code

Table 3: Time required for MPI code without File I/O when running on barcoo

Processes 4 9 16 25 36
grid 1000 x 1000,dt=0.1 | 14.372 | 14.7925 | 16.3337 | 15.3714 | 15.4491
Processes 49 64 81 100
grid 1000 x 1000,dt=0.1 | 17.7739 | 17.5863 | 17.6882 | 17.8928

32

Table 4: Time required for MPI code without File I/O when running on barcoo

Processes 4 9 16 25 36
grid 100 x 100,dt=0.1 | 0.143928 | 0.193516 | 0.174702 | 0.184978 | 0.233391
Processes 49 64 81 100
grid 100 x 100,dt=0.1 | 0.27448 | 0.206099 | 0.228061 | 0.21362

Table 5: Time required for MPI code without File I/O when running on barcoo

Run Time [s]
>

15.5

15

14.5r

14

Number of Processes

Processes 4 9 16 25 36
grid 1000 x 1000,dt=0.2 | 7.00159 | 7.26787 | 8.59168 | 8.18284 | 8.97944
Processes 49 64 81 100
grid 1000 x 1000,dt=0.2 | 8.99902 | 8.93141 | 9.04355 | 9.09262
0.28
0.26
0.24
2 022
E
DE: 0.2
0.18
—@— 1000 by 1000 grid points DI=0.11__=5 | e =@ 100 by 100 grid points Dt=0.1t__ =5 |
0.14
20 40 80 100 0 20 40 60 80

Number of Processes

100

Figure 32: scaling results of changing grid points by MPI code without file 1/O

Graphically, the scaling effects are very obvious above.

As we can imply from Figure.32 and Figure.33, Table.3 to Table.5, when we tried to
decrease the grid points of each processes, running time dropped dramatically. Results
of changing time step basically present two identical trends that running time rock-
ets quickly by using or more than 25 processes. Based on this results, running time
can be saved if applying appropriate grid points, larger time step and more carefully
orchestrated number of processes, as parallel efficiency would negatively affected once
too many processes are introduced.

33

18 9.5
17.5
g +
17
;153 ©.8.5
£ g
= 16 -
c =
3 =] B L
& 155 e
15t
7.5
14.5 1
s 1000 by 1000 grid points Dt=0.1t__ =5 s 1000 by 1000 grid points Dt=0.2 1max=5
14 7
0 20 40 60 80 100 0 20 40 60 80 100
Number of Processes Number of Processes

Figure 33: scaling results of changing total time steps by MPI code without file I/O

Speaking of parallel efficiency of MPI code, since the execution always includes the
the communication between processes, which takes time, the running time thus can
be increased due to the regular communication at each time step. When we use only
4 processes, level of communication is far less than that of 81 and 100 processes,
that is why for our Shallow-Water-Equation, the efficiency drops at certain number
of processes. Note that from both figures, running speed increased temporarily at 25
processes. This may be another optimum number of processes that balanced the slow
communication time with short running time.

4 Discussion

As we can see from the scaling results that they are all less than ideal when more
threads are used if more than 16 threads are used for OpenMp code. Parallel efficien-
cy can be used to illustrate this point.

34

Parallel efficienfy of OpenMp code without file I/O

d =d =1d=0.02
Xyt

d =d =1d =02
% oy vt
Ideal

Parallel Efficiency
o
o

1 2 4 8 16 32 64
Number of Nodes

Figure 34: parallel efficiency of increasing time step by OpenMp code without file I/O

Parallel efficienfy of OpenMp code without file 11O

d =d =0.1d=0.02
L B t

d =d =1d,=0.02
x t

Ideal

09

Parallel Efficiency
< o
~ ==]

<
=2}

o
@

©
IS

4 8 16 32 64
Number of Nodes

SN

Figure 35: parallel efficiency of increasing grid points by OpenMp code without file
1/0

In terms of OpenMp code, in order to reduce the running time and increase the effi-
ciency, grid points should not be too many. The following figure illustrates the speedup
and parallel efficiency produced by a 1000 x 1000 grid, time step is 0.1.

As we can see form figure.36 that more grid points and smaller time step results in

lower potential of speedup and lower parallel efficiency. Therefore, one way to reduce
running time is to use appropriate number of grid points.

35

1000 by 1000 grid speedup by OpenMp

64

d =d =0.01d=0.1
XY 1
Ideal

32

Speedup
o

1 2 4 8 16 32 64
Number of Threads

Figure 36: Speedup of OpenMp code with 1000 x 1000 grid

Parallel efficiency of OpenMp code with 1000 by 1000 grid points
—g—d,=d,=001,=0.1 ‘ I ‘

— | el

Parallel Efficiency
o o o
~ o] w

o
=)

=
w”

0.4 ; - ‘ : ‘
1 2 4 8 16 2 B4
Number of Nodes

Figure 37: Parallel efficiency of OpenMp code with 1000 x 1000 grid

In terms of the optimization of our MPI code, we tried to embedded our MPI code
with OpenMP directives, Which theoretically can help to create more threads for each
assigned process. Different form the previous OpenMP code, we did not add OpenMP
directive before the time marching loop, but we did put the for directive inside the
time marching loop. Since things can go wrong if I let many threads performing the

message passing.

36

100*100 grid points dt:0‘1, MPI code embedded with OpenMP directives

O S 3 I I I I] I I I I
=== Threads=1
0.28 - Threads=2
e T read s=4
Threads=8
0.26 [| ==me=m==Threads=16
Threads=32 g
w 0.24 + :::\‘.‘\'—
@ ""s\
E
ic 0.22]
=
=5
C o2f -
0.18 -]
0.16 2 1
7
0. -1 4 L | | | 1 | | | 1
0 10 20 30 40 50 60 70 80 90 100

Number of Processes

Figure 38: Comparing running time of hybrid parallel code with 100 x 100 grid with

dt=0.1

Table 6: Results of total time required for hybrid parallel code

Time P=4

P=9

P=16

P=25

P=36

P=49

P=64

P=81

P=100

T=1 | 0.1493

0.1616

0.1693

0.2342

0.1948

0.2278

0.2084

0.2353

0.2561

=2 | 0.1663

0.1615

0.1689

0.2196

0.2318

0.2953

0.2062

0.2460

0.2690

0.1602

0.1702

0.2177

0.2321

0.2566

0.2069

0.2532

0.2250

T=2
T=4 | 0.1478
T=8 | 0.1498

0.1579

0.1691

0.2371

0.2131

0.2755

0.2230

0.2371

0.2653

0.1569

0.1724

0.2140

0.2411

0.2308

0.2077

0.2571

0.2308

T=16 | 0.1470
T=32 | 0.1493

0.1569

0.1690

0.2229

0.2032

0.2537

0.2037

0.2412

0.2496

37

What we can imply from Figure.38 is that at the beginning, they all present the simi-
lar trend. At 36 processes, code running with 1 thread is the fastest, which is followed
by that of using 32 and 8 threads. By 49 processes, code with 2 threads is the slowest.
However, interestingly, the running time at the 64 processes by basically all processes
gathered together at roughly 0.2s. At the end, 100 processes, code running with 4 and
16 threads seems to be the most time-saving type.

For all of the scaling results, generally, I would say they are all less than ideal. Specif-
ically, part of the scaling results may present a close-to ideal trend, but the trend is
then heading to a negative way. Therefore, whether the outcome of our code is satisfy-
ing is up to the initial condition we used is appropriate or not, such as grid points and
time steps. Communication among the hardware of the super computer is basically
inevitable especially large number of threads or processes are to be introduced. How
to balance the time spent on hardware and saved by parallel would be the key to high
efficiency in MPI code, which is surely a bottleneck of parallel programming. Commu-
nication is essential in parallel programming when we need to use intermediate result.
Rounge-Kutta method is quite typical for this, parallel slowdown can thus increase
the running time when OpenMP method is used. Therefore, if we want to improve the
efficiency of the algorithm, we can either reduce the level of hardware communication
or the use of intermediate results.

38

5 Reference

Applied Numerical Method Steve More

39

	Introduction
	Purpose
	Governing Equation
	Fourth order Runge-Kutta analysis
	Fourth order Runge-Kutta for ODEs model
	RK4 Stability analysis
	RK4 Error Analysis

	Six order central difference stencil method and its derivation
	OpenMp
	MPI

	Method
	Finite Difference method for Shallow Water Equation
	RK4 For time marching loop
	Enforcement of periodic boundary condition for Various versions of the program and Data structure
	OpenMP application to parallelize solution
	MPI application to parallelize solution

	Results
	Scaling Results of OpenMP code
	Scaling Results of MPI code

	Discussion
	Reference

